21 research outputs found

    An Adaptive Electric Differential for Electric Vehicles Motion Stabilization

    No full text
    International audienceThis paper proposes a traction drive system for electric vehicles (EVs) with two separate induction motor drive-based wheels. In this case, an electric differential (ED) is developed. To handle EV stability while cornering or under slippery road condition, the proposed traction drive uses direct torque control and an adaptive-flux-and-speed-observer-based algorithm. EV-specific experimental tests on a digital signal processor TMS320LF2407 are carried out to show the effectiveness of the proposed adaptive ED in terms of robustness and stability

    Design and Control of the Induction Motor Propulsion of an Electric Vehicle

    No full text
    International audienceThis paper deals with a methodology for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances, the induction motor optimal power can be calculated. The final objective is to find its minimum weight, volume, and cost that meet the design constraints with minimum power under the European urban (ECE-15) and sub-urban (EUDC) driving cycles. The power presizing methodology is validated through extensive simulations for different induction motor-based EVs using a siding mode control technique

    On the Transition Improvement of EV or HEV Induction Motor Propulsion Sensor Fault-Tolerant Controller

    No full text
    International audienceThis technical paper deals with the transition performance improvement of a sensor fault-tolerant controller devoted to Electric (EV) or Hybrid Electric Vehicles (HEV). Indeed, improvements are brought over a previously developed technique that exhibit abrupt changes in the torque if a sensor fault is detected and after a transition from a control technique to another one [1]. The Fault-Tolerant Control (FTC) system firstly concerns the sliding mode control technique since better performances are obtained with an encoder to get the speed information. In the event of unavailability of the speed sensor, a sensorless fuzzy control technique is applied. In the proposed active fault-tolerant control approach a short and a smooth transition are achieved from the encoder-based control technique to the sensorless one using an appropriate fuzzy logic decision approach

    A Control Reconfiguration Strategy for Post-Sensor FTC in Induction Motor-Based EVs

    No full text
    International audienceThis paper deals with experimental validation of a reconfiguration strategy for sensor fault-tolerant control (FTC) in induction-motor-based electric vehicles (EVs). The proposed active FTC system is illustrated using two control techniques: indirect field-oriented control (IFOC) in the case of healthy sensors and speed control with slip regulation (SCSR) in the case of failed current sensors. The main objective behind the reconfiguration strategy is to achieve a short and smooth transition when switching from a controller using a healthy sensor to another sensorless controller in the case of a sensor failure. The proposed FTC approach performances are experimentally evaluated on a 7.5-kW induction motor drive

    Virtual-Sensor-Based Maximum-Likelihood Voting Approach for Fault-Tolerant Control of Electric Vehicle Powertrains

    No full text
    International audienceThis paper describes a sensor fault-tolerant control (FTC) for electric-vehicle (EV) powertrains. The proposed strategy deals with speed sensor failure detection and isolation within a reconfigurable induction-motor direct torque control (DTC) scheme. To increase the vehicle powertrain reliability regarding speed sensor failures, a maximum-likelihood voting (MLV) algorithm is adopted. It uses two virtual sensors [extended Kalman filter (EKF) and a Luenberger observer (LO)] and a speed sensor. Experiments on an induction-motor drive and simulations on an EV are carried out using a European urban and extraurban driving cycle to show that the proposed sensor FTC approach is effective and provides a simple configuration with high performance in terms of speed and torque responses

    Power factor correction of an electrical drive system based on multiphase machines

    No full text
    International audienceThis paper deals with the energy efficiency improvement of an electrical drive which can be used both in wind energy conversion or motor drive applications. A power factor (PF) control scheme is presented allowing energy efficiency enhancement and optimization in high power variable-speed drives based on multiphase machines. Thus, the double-star induction machine is taken, as an example of multiphase machines, to introduce the principle of the study presented in this paper. In fact, the purpose of this paper is to maintain the PF of the power-winding, of the double star induction machine, in vicinity of unity whatever the drive operating point. Also, this control scheme can be generalized for several kinds of multiphase machines

    SDTC-EKF Control of an Induction Motor Based Electric Vehicle

    No full text
    International audienceThis paper presents the experimental implementation of sensorless direct torque control of an induction motor based electric vehicle. In this case, stator flux and rotational speed estimations are achieved using an extended Kalman filter. Experimental results on a test vehicle propelled by a 1-kW induction motor seem to indicate that the proposed scheme is a good candidate for an electric vehicle control

    A Fuzzy-Based Strategy to Improve Control Reconfiguration Performance of a Sensor Fault-Tolerant Induction Motor Propulsion

    No full text
    International audienceThis short paper deals with the transition performance improvement of a sensor fault-tolerant controller devoted to automotive applications. Indeed, improvements are brought over a previously developed technique that exhibit abrupt changes in the torque if a sensor fault is detected and after a transition from a control technique to another one [1]. The Fault-Tolerant Control (FTC) system firstly concerns the sliding mode control technique since better performances are obtained with an encoder to get the speed information. In the event of unavailability of the speed sensor, a sensorless fuzzy control technique is applied. In the proposed active fault-tolerant control approach a short and a smooth transition are achieved from the encoder-based control technique to the sensorless one using an appropriate fuzzy logic decision approach

    Six-phase induction machine operating as a standalone self-excited induction generator

    No full text
    International audienceThis paper deals with the use of multiphase induction machines in renewable energy applications such as wind and hydropower. Thus, some preliminary test results carried out on a six-phase induction machine operating as a stand-alone self-excited induction generator and supplying various loads under different conditions are presented. Firstly, the dynamic model of the power generation system is developed considering the magnetizing inductance saturation and excitation capacitors sizing to ensure the excitation task. Then, simulation and experimental results carried out on a 5.5 kW six-phase squirrel-cage induction generator are presented and discussed

    Independent Control of Two Induction Motors Fed by a Five Legs PWM Inverter for Electric Vehicles

    No full text
    International audienceThis paper deals with the implementation of an independent control of two induction motors fed by five legs PWM inverter. In this context, two Pulse Width Modulation techniques are presented in order to be included in the indirect field oriented control algoritm. Experiments and simulation are carried-out, on an induction motor drive, to show that the developed independ control of five legs inverter is effective and provides a simple configuration with high performance in terms of speed and torque responses
    corecore